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Percolation theory is now standard in the analysis of polycrystalline materials where the grain boundaries
can be divided into two distinct classes, namely “good” boundaries that have favorable properties and “bad”
boundaries that seriously degrade the material performance. Grain-boundary engineeringsGBEd strives to
improve material behavior by engineering the volume fractionc and arrangement of good grain boundaries.
Two key percolative processes in GBE materials are the onset of percolation of a strongly connected aggregate
of grains, and the onset of a connected path of weak grain boundaries. Using realistic polycrystalline micro-
structures, we find that in two dimensions the threshold for strong aggregate percolationcSAP and the threshold
for weak boundary percolationcWBP are equivalent and have the valuecSAP=cWBP=0.38s1d, which is slightly
higher than the threshhold found for regular hexagonal grain structures,cRH=2 sinsp /18d=0.347… . In three
dimensions strong aggregate percolation and weak boundary percolation occur at different locations and we
find cSAP=0.12s3d and cWBP=0.77s3d. The critical current in highTc materials and the cohesive energy in
structural systems are related to the critical manifold problem in statistical physics. We develop a theory of
critical manifolds in GBE materials, which has three distinct regimes:sid low concentrations, where random
manifold theory applies,sii d critical concentrations where percolative scaling theory applies, andsiii d high
concentrations,c.cSAP, where the theory of periodic elastic media applies. Regimesiii d is perhaps most
important practically and is characterized by a critical lengthLc, which is the size of cleavage regions on the
critical manifold. In the limit of high contraste→0, we find that in two dimensionsLc~gc/ s1−cd, while in
three dimensionsLc~g expfb0c/ s1−cdg / fcs1−cdg1/2, whereg is the average grain size,e is the ratio of the
bonding energy of the weak boundaries to that of the strong boundaries, andb0 is a constant which is of order
1. Many of the properties of GBE materials can be related toLc, which diverges algebraically on approach to
c=1 in two dimensions, but diverges exponentially in that limit in three dimensions. We emphasize that GBE
percolation processes and critical manifold behavior are very different in two dimensions as compared to three
dimensions. For this reason, the use of two dimensional models to understand the behavior of bulk GBE
materials can be misleading.
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I. INTRODUCTION

There are many scientifically and technologically impor-
tant materials where grain boundaries are critical to control-
ling material properties. Examples range from structural me-
tallic and intermetallic materialsf1–18g to polycrystalline
high temperature superconductorsf19–34g and ceramic
varistorsf35,36g. The grain boundaries in many of these ma-
terials can be separated into “good” boundaries and “bad”
boundaries so that a network model with two types of net-
work bond is appropriate. This is the general class of model
which we consider in this contribution, where we definec to
be the fraction of grain boundaries which are “good.” We
generate realistic polycrystalline microstructures using well
established grain growth modelsf37–40g and we analyze
percolation processesf24,25,32,34,41–46g and critical mani-
folds f20,21,25,47–50g in these grain structures using scaling

ideas developed in statistical physics. Critical manifolds in
polycrystalline microstructures are found using the maxi-
mum flow algorithm from computer sciencef51,52g. We
present the results of large scale simulations for both two and
three dimensional polycrystalline microstructures and we de-
rive scaling laws which provide a very good description of
the numerical data.

The optimization of critical currents in polycrystalline ce-
ramic high temperature superconductors relies on low angle,
high critical current, grain boundariesf19,26,29g. Typically
grain boundaries between grains which are misoriented by
less than about 5° have a critical current which is of order
100 times as large as that of high angle grain boundaries.
Grain-boundary “maps”f26g or “networks” f18g of either
special boundaries or “weak” boundaries have been experi-
mentally determined and correlated with desired material
propertiesf29g. One interesting property which we calculate
is the critical current of a polycrystalline aggregate as a func-
tion of the fractionc of low angle grain boundaries. There
are many papers discussing this quantity, with some focusing
on the behavior near the percolation thresholdcSAP and on
numerical simulations. Our previous studiesf50,53,54g have
presented the results of simulations of realistic bulk poly-
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crystalline microstructures. A scaling theory for critical cur-
rent in GBE materials based on the theory of periodic elastic
mediaf55–57g leads to surprisingly good expressions for the
critical current as a function ofc in the high concentration
regime, which is the regime of most practical interest. Sev-
eral other properties of the critical manifold, such as its
roughness, are also presented here and are also well de-
scribed by the scaling theories which we derive.

An early success of grain-boundary engineering was the
use of processing to increase the volume fraction of special
grain boundaries in order to increase the corrosion resistance
of Ni-16Cr-9Fe alloysf2,4–6,8,12g. In this application the
onset of percolation of a path of weak grain boundaries is
considered to be important, and we define the threshold for
this percolation process to becWBP. We define the normalized
penetration depth of weak boundarieslP/L and calculate this
quantity as a function ofc. Creep and cracking processes
have also been related to the grain-boundary character distri-
bution f7,58g. The onset of a strong percolating aggregate is
more relevant to these processes, and we definecSAP as the
threshold for this percolation process. We find the thresholds
cSAP andcWBP for realistic polycrystalline microstructures.

A close connection exists between the statistical physics
community and the fracture community in the area of frac-
ture surface statistics. Following the suggestion by Mandle-
brot f59g that fracture surfaces are fractal, there has been
intense study of the physical origin of the roughness of frac-
ture surfacesf60–62g and of relations between roughness and
fracture toughnessf63g. There is debate about whether the
short distance roughness is described by quasistatic models
of the sort described here, or by dynamical modelsf62g. Due
to the ability to control the concentrationc and grain sizeg
in GBE materials, these systems present a tunable system in
which to test their competing theories. The roughness simu-
lations and scaling theory presented here provide a useful
starting point in this discussion.

As well as definingc to be the fraction of “good” grain
boundaries, we also use an “energy contrast ratio”e which is
the ratio of the grain-boundary energy to the grain interior
energy. This energy contrast has different meanings in differ-
ent applications. In the application to corrosion resistance it
measures the susceptibility of high angle grain boundaries to
permeation by corrosive agents, as compared to the bulk. In
the case of high temperature superconductors it is the ratio of
the critical current of high angle grain boundaries to that of
low angle grain boundaries. In fracture applications it is the
cohesive energy of poorly bonded boundaries as compared to
well bonded boundaries. In magnetic applications it is the
exchange constant of well isolated grains as compared to
poorly isolated grains. The variablec also has different ori-
gins in different applications, for example in the case of high
temperature superconductors it is the fraction of grain
boundaries which have misorientation angles less than
roughly 3%, while in the case of corrosion resistance it is the
fraction of grain boundaries which are low order CSL bound-
aries. The percolation processes we study depend on the pa-
rameterc. The critical manifolds we discuss depend on both
c ande and are minimum energy interfaces in polycrystalline
materials where a fractionc of the grain boundaries are as-
signed energye and the remaining grain boundaries as well
as the grain interiors have energy 1.

The paper is organized as follows. In the next section,
Sec. II, we discuss the numerical and theoretical methods we
use to analyze percolation processes and critical manifolds in
models of GBE materials. Section III presents data for the
percolation processes which are relevant in GBE materials.
Section IV presents data for the critical manifoldsCMd and
presents scaling theories for the behavior of the CM in vari-
ous concentration regimes. The paper closes in Sec. V with a
summary and discussion.

II. METHODS

In this section we briefly outline the computational tools
and theoretical ideas used in the remainder of the paper.

A. Computational methods

We grow polycrystalline grain structures using a well
tested Potts model algorithmf37–40g. Briefly, a q-state fer-
romagnetic Potts model on a hypercubic lattice is quenched
from a high temperature state to zero temperature and a
Monte Carlo procedure is used to anneal the Potts configu-
ration of spins. Bonds between sites with different spin labels
are considered to be grain boundaries. The typical grain size
g increases with time ast1/2. For the simulations described
herein, we used 100 Potts labels in the three dimensional
simulations and 256 Potts labels in the two dimensional
simulations. The calculations are carried out on hypercubic
lattices of sizeLd sites, whered is the spatial dimension. It
has been found that the grain structures in samples with av-
erage grain size greater than 6, i.e.,g.6 in two dimensions
andg.4 in three dimensions, provide realistic polycrystal-
line microstructuresf37,38g. We also restrict our analysis to
grain sizes for which the ratiog/L is less than 1/10 to avoid
grains which span the sample and to reduce finite-size ef-
fects. In two dimensions we present simulations on lattices
of up toL=1000 and in three dimensions on lattices of up to
L=100. The most time consuming part of our calculations is
the generation of the grain structures. Examples of typical
grain structures in two and three dimensions are presented in
Figs. 1sad and 1sbd, respectively.

In order to model GBE materials, we consider a fractionc
of the grain boundaries to be strong and a fraction 1−c to be
weak. The bonds across the weak grain boundaries are as-
signed an energye, while the bonds which are interior to the
grains and the bonds across the strong boundaries are both
assigned unit energy. The strong grain-boundary bonds are
selected based on the difference in Potts labels at the ends of
a bond. That is, in the Potts model, each site has a labelsi
=1…q. We define the normalized difference between the
Potts labels at the sites at each end of a bond to bed= usi
−sju /q. If d,c, then the bond is a strong bond, while ifd
.c the bond is a weak bond. We also define the difference in
labels moduloq, so that labels 1 andq differ by 1. This
definition ensures that all label differences occur with equal
probability. An example of a two dimensional system where
c=0.39 is presented in Fig. 2sad. In this figure, the weak
grain boundaries are highlighted as thick grey lines. The re-
maining grain boundaries are strong. Note that in many ma-
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terials the distribution of grain boundary orientations is not
uniform, as is implicit in the model used here. The effect of
varying the grain-boundary orientation distribution and in-
cluding correlations in grain-boundary orientationsf32g can
be included in a straightfoward manner and will be consid-
ered elsewhere.

In GBE structural materials there is ample evidence that
special boundaries exhibit enhanced corrosion resistance
f1–16g. In that application, the ratio of the corrosion resis-
tance of a high angle boundary to that of a special boundary
is close to zero. In the case of ceramic superconductors such
as YBCOf19g the ratio of critical currents between low and
high angle boundaries is of order 100. In GBE materials the

ratio of cohesive energies between special and random
boundaries is of order 5. For highTc materials we expecte
<0.01, for corrosione<0.0, while for the cohesive energy
of structural materialse<0.1. To span this range of ratios,
we present data for the ratiose=0.0001, 0.01, 0.1 and for the
full range of 0øcø1. The energy ratioe is a generalized
parameter that corresponds to the ratio of critical currents in
the highTc case, the ratio of corrosion resistances in the case
of corrosion applications, and to the ratio of cohesive ener-
gies in the surface energy application. In the analysis of per-
colative geometries described below, the specific value ofe
does not play a role. However, in the calculation of critical
manifolds the value ofe is important.

FIG. 1. sColor onlined Examples of simulated grain structures in two and three dimensions.
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Two percolation processes are important in the grain-
boundary model described above. The first is the onset of a
percolating path of weak grain boundaries, which we call
weak boundary percolationsWBPd. Weak grain boundaries
allow the penetration of corrosive agents, e.g., oxygen or
steam, into the interior of a material and hence enhance cor-
rosion. It is observed experimentally that three dimensional
GBE materials have enhanced corrosion resistance forc
.0.77 ssee, e.g., Fig. 3 of Ref.f12gd. In order to find diffu-
sion paths in a polycrystalline microstructure, we use breadth
first search starting at the exterior of the sample. This proce-
dure allows penetration from an existing invaded site if the
neighboring bond is weak. This invasion is iterated until a
surface of strong bonds terminates the penetration process.
An example of this penetration process in a two dimensional
microstructure withc=0.39 is presented in Fig. 2sbd. From
results such as these we calculate: the probability that a span-
ning cluster of weak boundaries exists,Ps; and the average
penetration depth of weak grain boundaries,lP. When a span-
ning cluster of weak boundaries exists,lP=L. In the next
section we present data forlP/L as a function ofc.

If a grain is connected to two other grains by strong grain
boundaries, then that grain can transmit enhanced mechani-
cal or electrical properties through the network. If there is a
continuous path of strongly connected grains, then we have
strong aggregate percolationsSAPd. We find the largest
strong aggregate in polycrystalline microstructures using
breadth first search. An example of a strong aggregate in a
two dimensional system withc=0.39 is presented in Fig.
2scd. In the next section we present data for the spanning
probability for this percolation process,Ps, and also the order
parameter for this process, which is the probability that a site
in the sample is part of the largest strongly connected cluster,
g.

To find the critical manifold through polycrystalline en-
sembles, we use the push-relabel max-flow/min-cut algo-
rithm of Goldberg and Tarjanf64g. The critical manifold cor-
responds to the minimum cut in a network flow problem and
to the minimal energy surface in a domain wall problem
f51g. The minimum cut is associated with the maximum flow
in a capacitated network, where in our applications the ca-
pacity of each bond is either 1 ore, as described above. This
problem is a standard problem in network flow theory and
has recently been extensively used to study a variety of sta-
tistical physics problems, including the random field Ising
model, random manifolds, and periodic elastic mediaf65g.
We have recently used this method to study critical mani-
folds in polycrystalline materialsf50g and we use similar
methods to study GBE materials in this work. Examples of
minimal energy surfaces found using the maximum flow al-
gorithm for models of GBE materials in two and three di-
mensions are presented in Figs. 3sad and 3sbd. From results
such as these, we calculate the following key properties of
the critical manifoldssCM’sd: The energy of the CM,E; the
number of bonds on the CM,N; the fraction of the CM
which lies on weak grain boundaries,fw; and the roughness,
w2=kh2l−khl2 of the CM.

B. Theoretical ideas

Percolation theory is used to describe the scaling behavior
near the percolation thresholdscWBP and cSAP f46g. The

FIG. 2. Illustration of percolation processes in a 2D GBE mi-
crostructure.sad A 2D polycrystalline sample with fraction 1−c
=0.61 of grain boundaries which are weaksthick grey boundary
linesd. sbd The weak grain boundaries which are connected to the
exterior are marked in black. This is the same sample as insad and
is just above the weak boundary percolation threshold which is on
average atc=0.38s2d. scd The strongly connected aggregate is
black. This is the same sample assad. This sample has a percolating
strong aggregate and the other colors indicate the different strongly
connected clusters.
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theory of random manifolds is used to describe the scaling
behavior of critical manifolds in the regimec,cSAP
f48,57,66g, while the theory of periodic elastic media de-
scribes the behavior of critical manifolds in the regimec
.cSAP f50,55,57g.

First consider the spanning probabilityPs, which is the
probability that an extensive cluster of connected sites exists
in the sample. Above the percolation threshold,c.cp, the
spanning probability is 1,Pssc.cpd=1, in the thermody-
namic limit. Below the percolation threshold, the spanning
probability is zero, Pssc,cpd=0, in the thermodynamic
limit. The width of the transition inPs,dPs depends on
sample size and goes to zero algebraically as the sample size
L goes to infinity,

dPsscpd < sL/gd−1/n, s1d

where n is the correlation length exponent, and in two di-
mensions we have the exact result,n2D=4/3, while in three

dimensions we haven3D=0.88. The effective lattice size of
the polycrystalline aggregate isL /g, whereg is the average
grain size. All of the standard percolation scaling lawsf46g
are modified by this rescaling. The infinite cluster probability
g is the probability that a site is part of the spanning cluster.
In the thermodynamic limit, it behaves as

g < gdsc − cSAPdb c . cSAP, s2d

where b is the order parameter exponent, which is known
exactly in two dimensions,b2D=5/36, and to high precision
in three dimensions, whereb=0.41f46g. The finite size scal-
ing behavior at the critical point is given by

gscSAPd < gdsL/gd−b/n. s3d

The critical exponentsb andn are expected to be universal,
so they apply to both weak boundary percolation and to
strong aggregate percolation. The correlation length scales as

FIG. 3. sColor onlined Examples of
minimal energy manifolds in two and three
dimensions. These examples are fore
=0.01, andsad a two dimensional system
with c=0.39, andsbd a three dimensional
sample withc=0.15.
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j < guc − cpu−n s4d

at bothcp=cWBP and cp=cSAP. Of course the prefactors for
these two cases are nonuniversal and need to be determined
from simulations or experiment.

The penetration depth, which we take to be the largest
depth to which weak grain boundaries penetrate, scales as

lP < j c . cWBP. s5d

Due to the fact that we take the largest penetration depth in
our definition oflP, this quantity has also a logarithmic size
dependent correction factor arising from rare fluctuations
f67g. An alternative definition of the penetration depth is to
take the average depth to which weak boundaries penetrate.
This also diverges at the critical threshold, however, with a
different exponent and it does not exhibit rare fluctuation
effects.

Random manifolds arise in the study of domain walls in
random bond Ising magnets. The scaling behavior of these
domain walls has been elucidated in Refs.f48g andf66g. Two
key properties in this analysis are the energy of the domain
walls and the roughness of the domain walls. The scaling
laws obeyed by continuum models for random bond Ising
models are

E = a1L
d−1 + a2L

u and w = a3L
z, s6d

wherea1,a2,a3 are nonuniversal constants,d is the spatial
dimension,L is the sample size, andu and z are universal
exponents which are related by the equationu=2z+d−3
f48,56,65,66g. The value ofz is known to be exactly 2/3 in
two dimensionsf48g and to be approximatelyz=0.41s1d
f51,66g in three dimensions. The scaling behavior of critical
manifolds in GBE materials are described by similar scaling
laws in the limitc,cSAP as will be demonstrated in Sec. IV.

In the k100l orientation domain walls of random bond
Ising magnets on cubic lattices, the lattice structure imposes
a periodic potential on the random manifold. Random mani-
folds in a periodic potential arise in a variety of other con-
texts and the term “periodic elastic media” has been coined
to describe models of these phenomena. The scaling laws for
periodic elastic mediasPEMd are quite simple generaliza-
tions of the scaling laws presented in Eq.s6d. Random mani-
folds in PEM exhibit a competition between the tendency of
the periodic potential to pin the manifold and to make it flat,
and the tendency of the disorder to make the manifold rough.
Scaling theories of periodic elastic mediaf55–57g indicate
that in hypercubic lattices in thek10l or k100l directions, the
critical lengthLc beyond which manifolds roughen scales as

Lc < p/s1 − pd and Lc < expfa0p/s1 − pdg s7d

in two and three dimensions, respectivelyf57g. In these
equationsp is the probability that a bond is present in a
hypercubic lattice anda0 is a constant. The scaling laws for
the energy and roughness of PEM’s are then modified to

E = a5L
d−1 + a6L

u and w = a7S L

Lc
Dz

. s8d

The new feature in comparison with Eq.s6d is the appear-
ance ofLc in the scaling of the roughness. Physically,Lc is

the typical size of flat regions on the critical manifold or
domain wall. The critical lengthLc is important in modeling
critical manifolds in GBE materials in the regimec.cSAP,
and in Sec. IV, we extend the analysis ofLc to the case of
GBE materials and show that the scaling behavior of all of
the properties we calculate numerically can be related to the
scaling behavior of this critical length.

III. PERCOLATION PROCESSES

Figures 4 present data for the spanning probability for
weak boundary percolationssolid symbolsd and strong aggre-
gate percolationsopen symbolsd in two dimensionsfsee Fig.
4sadg and in three dimensionsfsee Fig. 4sbdg. First consider
the two dimensional data in Fig. 4sad. A simple model for
this case is to assume that the polycrystalline microstructure
consists of a regular infinite lattice of hexagons each of size
proportional to the average grain sizeg. The percolation
thresholds in that case are known exactly. The weak bound-
ary percolation process is equivalent to bond percolation on a
honeycomb lattice, while the strong aggregate percolation
corresponds to bond percolation on the dual to the honey-
comb lattice, which is the triangular lattice. From this we
deduce that the strong aggregate and weak bond percolation
thresholds are equivalent in regular honeycomb lattices and
that cSAP=cWBP=2 sinsp /18d<0.347… f46g. The data in
Fig. 4sad are quite consistent with this result, though the
percolation threshold is shifted slightly to higher values ofc.
Taking the crossing point of the curves in Fig. 4sad as an
indicator of the percolation threshold, we findcSAP

2D

=0.38s1d and cWBP
2D =0.38s1d. One possible origin for the

slightly higher threshold in the polycrystalline model as
compared to the regular honeycomb lattice is the presence of
some fourfold grain-boundary junctions in the polycrystal-
line network.

Figure 4sbd presents the data found forPs in three dimen-
sions. The most obvious difference between the results in
Fig. 4sad and those in Fig. 4sbd is that in three dimensions,
the onset of a strong aggregate occurs well before the cessa-
tion of percolation of weak grain boundaries. This means that
there is a broad regime in which an “interpenetrating phase”
exists. In this phase an extensive strong aggregate co-exists
with percolation of weak boundaries. In two dimensional
grain structures this cannot occur as the percolation of weak
boundaries cuts off the percolation of a strong aggregate.
From the results in Fig. 4sbd, we find thatcSAP

3D =0.12±0.03
and cWBP

3D =0.77±0.03. A grain in a three dimensionals3Dd
polycrystalline network typically has 12–14 neighboring
grains. The rhomboid dodecahedral latticesi.e., fccd is quite
similar in topology. The fcc strong aggregate and weak bond
percolation thresholds arecWBP=0.802 andcSAP=0.119f46g,
which are actually quite close to the values which we ob-
serve in the simulations.

Figure 5 presents data for order parameters related to the
two key percolation processes in our GBE models. The first
order parameter is related to percolation of the strong aggre-
gate. The order parameter in this case is the probability that
a site is on the largest strongly connected clusterg ssolid
symbols in Fig. 5d. The order parameter for the onset of a
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percolating weak boundary network is the penetration depth
of weak grain boundarieslP sopen symbols in Fig. 5d. As
expected, the thresholds for these order parameters are con-
sistent with the results found from the spanning probability.
The scaling exponents forg and lP are expected to be those
given in Eqs.s2d and s5d, respectively, and we find that the
standard exponents are consistent with the data of Fig. 5. As
a practical matter, the penetration of corrosive agents into a
material is suppressed strongly forc.cWBP due to the rapid
decrease inlP for c.cWBP ssee Figs. 5d.

IV. CRITICAL MANIFOLDS

We have calculated four properties of CM’s as a function
of c, the concentration of strong bonds, and the bond contrast
e. Note that we take both the energy of the strong boundaries
and that of the grain interiors to be unity, so thate is the ratio
between the strength of the weak boundary bonds and either
of these bonds. The properties we have calculated are:sid the
energy of the CM,E; sii d the fraction of the CM which lies
on weak grain boundaries,fw; siii d the total number of bonds
which lie on the CM,N; and sivd the roughness of the CM,
w. The results that we have found for these four quantities in
two and three dimensions are presented in Figs. 6–9. In order
to understand the results presented in Figs. 6–9, we develop

FIG. 4. The spanning probabilitiesPs for weak boundary perco-
lation ssolid symbolsd and strong aggregate percolationsopen sym-
bolsd as a function of the concentration of strong grain boundariesc
in sad two dimensions andsbd three dimensions. In each case, the
data are averaged over a range of values of the effective lattice size
L /g. The open and filled squares are from averages over the range
10øL /gø50 stwo dimensionsd and 6øL /gø10 sthree dimen-
sionsd; the open and filled triangles are from averages over 50
øL /gø100 stwo dimensionsd and 10,L /g,15 sthree dimen-
sionsd; the open and filled circles are from averages over 100
øL /gø200 stwo dimensionsd and 15,L /g,20 sthree dimen-
sionsd. The two dimensional data were calculated from a total of
over 30 000 different polycrystalline samples, while the three di-
mensional data were calculated using over 15 000 samples.

FIG. 5. Two order parameters for the two different percolation
processes occuring in the GBE model. The order parameter for
strong aggregate percolation is the infinite cluster probabilitysopen
symbolsd which has the scaling behavior given by Eq.s2d. The
order parameter for weak boundary percolation is the penetration
depth of the weak boundariesssolid symbolsd. The scaling behavior
of this order parameter is given by Eqs.s4d and s5d. Results are
presented for three different sample sizes and insad two dimensions
andsbd three dimensions. The data are averaged in the same way as
that described in the caption to Fig. 4
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scaling laws in three regimes:c<cSAP, c!cSAP, and c
@cSAP. We concentrate on the regimeeø0.1 which is of
most interest for GBE applications.

A. Low concentrations c™cSAP

At low concentrations of strong grain boundaries, and
provided the energy ratioe is small, the CM lies almost
entirely on the weak grain boundaries, as found in models of
polycrystalline materialsf50g. This is evident in Fig. 7 which
gives the fraction of the CM bonds which lie on weak grain
boundaries. Forc!cSAP, fw<1 and this leads to simple be-

haviors for all of the quantities that we measure. First, the
energy of the CM is simply

E < eLd−1 < eN. s9d

That is, since all of the CM bonds lie on weak grain bound-
aries, the CM energy is the number of bonds on the CM
times the energy contrast. A plot of the scaled energyE/Ld−1

as a function ofc is presented in Fig. 6. It is evident that the
scaling behavior of Eq.s9d extends all the way tocSAP as is
expected based on the fact thatfw remains near unity forc
,cSAP.

FIG. 6. The average interface energy as a function of strong
bond concentration for three values of the bond strength ratio,e
=0.0001sfilled squaresd, e=0.01 sfilled circlesd, e=0.1 sfilled tri-
anglesd in sad two dimensions andsbd three dimensions. The data
are averaged over a range of values ofL /g, which is the effective
lattice size. In two dimensions we restricted calculations to effective
lattice sizes in the range 100,L /g,200, while in three dimensions
we considered 15,L /g,20. These effective lattice sizes are quite
small, so we expect finite size effects to be significant. In two di-
mensions the data come from averaging over a total of 3480
samples, while in three dimensions the total number of samples in
the selected window was 3422.

FIG. 7. The fraction of the critical manifold which consists of
weak grain boundaries as a function of strong bond concentration
for CM’s in: sad two dimensions andsbd three dimensions fore
=0.0001sfilled squaresd, e=0.01 sfilled circlesd, and e=0.1 sfilled
trianglesd. The data are averaged the same as was described in the
caption to Fig. 6. The heavy lines are fits of thee=0.0001 data to
the scaling predictions of Eqs.s33d and s34d in the concentration
range 0.7,c,1.0. In sad, the parameter valuesa1=1.58,a2=0.56,
anda3=0.19 were used in Eq.s33d to obtain the fit, while insbd, the
parameter valuesa1=0.46, a2=3.22, a3=0.50, andb0=0.53 were
used in Eq.s34d. The curve of best fit is presented in the interval
c.0.5 for illustration purposes.
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The roughness of the CM in the low concentration limit is
the same as that of random manifolds in polycrystalline ma-
terials in the limit of weak boundaries,e!1, so thatf50g

w < gSL

g
Dz

, s10d

wherez is the roughness exponentfsee Eq.s6d and the dis-
cussion following itg. The roughness of the CM as a function
of grain size, at fixed sample sizeL, is then predicted to be
w~g1−z. Tests of this relation in two and three dimensions

are presented in Fig. 10. The exponents found are nicely
consistent with the expected universal valuesz2D=2/3 and
z3D=0.41s1d f51,52g. This lends strong support to the idea
that L /g acts as an effective lattice constant for CM’s in
polycrystalline materials.

B. Critical regime cÉcSAP

Percolative effects dominate in the critical regime, and the
scaling behavior may be understood based on critical scaling
and finite size scaling near second-order phase transitions.

First consider the casee→0, in which case the finite-size
scaling behaviors atcSAP are given by

FIG. 8. The total number of bonds which lie on the critical
manifold N as a function of the strong bond concentrationc for
three values of the bond strength ratio,e=0.0001sfilled squaresd,
e=0.01 sfilled circlesd, ande=0.1 sfilled trianglesd. sad The data in
two dimensions;sbd the data in three dimensions. The data are
averaged the same as was described in the caption to Fig. 6. The
heavy line is a fit of thee=0.0001 data to the scaling theory pre-
dictions of Eqs.s36d ands37d in the interval 0.7,c,1.0. Insad, the
parameter valuesa1=1.69 anda2=0.59 were used in Eq.s36d to
obtain the fit, while in sbd, the parameter valuesa1=0.22, a2

=4.36, andb0=0.68 were used in Eq.s37d. The curve of best fit is
presented in the intervalc.0.5 for illustration purposes.

FIG. 9. The scaled roughness as a function of the strong bond
concentration for three values of the bond strength ratio,e
=0.0001sfilled squaresd, e=0.01 sfilled circlesd, and e=0.1 sfilled
trianglesd. The data are averaged in the same way as described in
the caption to Fig. 6. The heavy line is a fit of thee=0.0001 data to
the scaling theory predictions of Eqs.s30d and s31d in the interval
0.7,c,1.0. In sad, the parameter valuesa1=0, a2=0.36, andz
=0.59 were used in Eq.s30d to obtain the fit, while insbd, the
parameter valuesa1=0.12, a2=0.67, b0=1.48, andz=0.41 were
used in Eq.s31d. The curve of best fit is presented in the interval
c.0.5 for illustration purposes.
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E < 1; w < L; N < LDe, s11d

whereDe is the external perimeter dimension in percolation.
In two dimensions,De=5/4 f46g, while in three dimensions
De=Df whereDf =2.53 is the fractal dimension of the infinite
clusterf46g. At the critical point, the number of bonds on the
CM is proportional to the number of bonds on the external
perimeter of the largest strong-aggregate cluster, as the CM
avoids cutting any strong bonds in the smalle limit. The
energy result in Eq.s11d is evident from the fact that on the

infinite cluster there are singly connected bonds which may
be cut to disconnect the cluster. The roughness is of order of
the sample size due to the fact that the infinite cluster is an
isotropic fractal with holes on all length scales. The behavior
on approach topc is found by using the nodes, links, and
blobs picturef46g to rewrite Eq.s11d as

E

Ld−1 <
1

jd−1 ;
N

Ld−1 < jDe−d+1; w < jSL

j
Dz

, s12d

wherej<guc−cSAPu−n is the correlation length. From these
equations, we find

E

Ld−1 < sc − cSAPdsd−1dn, c . cSAP, s13d

w < g1−zLzuc − cSAPu−ns1−zd L @ j, s14d

and

N

Ld−1 < sc − cSAPd−sDe−d+1d/n L @ j. s15d

However, if the energy contraste is finite, the divergence
in the roughness atcSAP is rounded. This is due to the fact
that in that case, large excursions of the critical manifold cost
an energy proportional to the number of bonds in the excur-
sion times e. If the energy of a large excursion around
strongly connected grains is larger than the cost of breaking
the grain, then cleavage of the grain occurs. If we definer to
be the length scale of the excursion, then the energy cost of
an excursion is proportional toegd−1rDe.

Equating this to the energy cost of cleaving a graingd−1,
we find a critical length for cleavagerc, given by

rc <
1

e1/De
. s16d

If the percolative correlation length is much greater than the
length scale cutoff given by Eq.s16d, i.e., j@ rc, then the
energy of the CM is given by

E < gd−1S L

grc
Dd−1

~ sedsd−1d/DeLd−1. s17d

As seen in Figs. 8 and 9, at finite energy contrasts, the
number of bonds on the CM and the roughness of the CM
are reduced dramatically. This is understood as follows. The
largest possible excursion of the CM at finitee is grc. The
roughness of the CM then scales asgrc instead of withj. In
a similar way, the number of bonds on the interface also
scales withgrc. In particular for the roughness, we expect
that the roughness is that of a random manifold with renor-
malized lattice sizeL /grc, so that

w < grcS L

grc
Dz

= esz−1d/Deg1−zLz. s18d

The roughness thus diverges as the energy contrast goes to
zero asw<e−0.267 in two dimensions wherez=2/3, De
=5/4, while w<e−0.233 in three dimensions wherez
=0.41s1d, De<2.53. The exponents describing the scaling of
roughness with the energy ratioe are quite small, which

FIG. 10. Scaling of the roughness as a function of grain size:sad
in two dimensions forc=0.3 andc=0.5; sbd in three dimensions for
c=0.1 andc=0.35. The open circles are the raw data atc=0.3 stwo
dimensionsd and c=0.1 sthree dimensionsd. The open squares are
the raw data atc=0.5 stwo dimensionsd and atc=0.35 sthree di-
mensionsd. The filled circles and filled squares are the data averaged
over a narrow binsof order 1d in grain size. The lines of best fit to
the data are indicated. In both two and three dimensions the data
agree well with the scaling prediction of Eq.s18d. In two dimen-
sions the line of best fit has a slope 0.30s2d for c=0.3 and 0.32s2d
for c=0.5 while in three dimensions we find a slope of 0.59s5d for
c=0.1 and a slope of 0.65s5d at c=0.35, which should be compared
with the predictiong1−z, where 1−z=1/3 in two dimensions and
1−z=0.59 in three dimensions.
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indicates that a large energy contrast is required in order to
observe pronounced peaks in the roughness and in the num-
ber of bonds on the CM nearcSAP. This is evident from Figs.
7 and 8, where it is seen that even for a contrast ofe=0.01,
the critical behavior nearcSAP is rounded significantly. The
energy and the fraction of weak boundaries on the CM are
more weakly dependent on the energy contrastssee Figs. 5
and 6d, though as seen in Eq.s17d there are still nontrivial
scaling laws atcSAP.

Another feature of the behavior ofw andN as a function
of strong bond concentration is that the peak value of these
quantities moves to higherc as the energy contraste in-
creases. This is due to the fact that at finitee, the maximum
manifold wandering occurs whenc.cSAP and rc=j. These
conditions maximize the number of strong bonds while still
providing weak paths up to lengthrc. Using these conditions,
we find that the peak in the roughness and in the number of
CM bonds occur atcP found from

1

e1/De
= scP − cSAPd−n. s19d

The location of the peak shift thus scales as

cP − cSAP< en/De. s20d

C. High concentrations,cšcSAP, e\0

The limit c=1 is trivial, as in that limit the CM is a cleav-
age surface, so that the number of bonds on the CM is just
the surface area and the energy isN times the energy of the
strong bonds, which we have taken to be 1. The roughness of
a flat surface is zero and the fraction of the CM that is on
weak boundaries is clearly zero. Forc=1, we thus have

E

Ld−1 =
N

Ld−1 = 1; and fw = 0 =w. s21d

In the regimec,1 with 1−c small, we can consider there
to be a relatively small number of weak grain boundaries.
This is the regime in which scaling concepts used in the
analysis of periodic elastic media apply. We are primarily
interested in the limit of small values ofe, so that a weak
boundary is favorable at almost all angles to the average CM
plane. For finite 1−c an Imry-Ma argument provides a sur-
prisingly good theory to describe the large scale behavior of
the critical manifold.

In the analysis below, we use the renormalized length
scalel =L /g. In the Imry-Ma argumentf55,57g, we consider
a fluctuation of sizel from a flat surface. This fluctuation
consists ofld−1 grain boundaries. Such a fluctuation is advan-
tageous if it contains a larger than average number of weak
grain boundaries. The large scale roughening of the critical
manifold is driven by the nonperturbative or “co-operative”
Imry-Ma fluctuations which in the context of GBE materials
are derived and analyzed below. In addition to these large
scale excitations, there are small scale fluctuations which
lead to terms proportional to 1−c. These terms can be con-
sidered to be perturbative terms while the Imry-Ma terms are
nonperturbative.

According to the central limit theorem, the probability
that a fluctuation of sizeS has energyES is given by

PsESd ~
1

s2ps2Sd1/2e−sES − è Sd2/f2s2Sg, s22d

whereS= ld−1 is the number of grains in the fluctuation. Here
ES is in units of the grain size. To recover the energy of the
fluctuation in standard units, we just multiplyES by gd−1. è
is the average energysper graind of a grain boundary while
s2 is the standard deviationsper graind in the energy of a
grain boundary. For the GBE model we are using, we have

è = c; s2 = cs1 − cd. s23d

From Eq. s22d we estimate the typical size of the largest
energetically favorable fluctuation by finding the solution to

1

s2ps2Sd1/2e−dEgain
2 /s2s2Sd < 1. s24d

The maximum energy gain achieved by these fluctuations is
then proportional to

dEgain~ fs2S lns2ps2Sdg1/2. s25d

The energy cost of such a fluctuation scales as

dEcost~ è ld−2. s26d

From Eqs.s25d and s26d it is evident that at large enough
length scales, the energy gain is larger than the energy cost in
both two and three dimensions. The energy gain favors a
fluctuation which roughens the critical manifold, so at long
length scales, the critical manifold “wanders” to take advan-
tage of regions of the material where there is a larger than
average number of weak boundaries. The most important
quantity in the theory is the critical lengthLc, which is the
length scale at which the wandering sets in. The critical
manifold is flat on length scalesL,Lc and “rough” on
longer length scales, i.e., it is rough forL.Lc. Equating Eqs.
s25d ands26d and dropping the logarithmic term leads to the
following result for critical manifolds in two dimensional
systems, such as thin films:

s2S< è2, so that Lc <
gc

s1 − cd
. s27d

In three dimensions, i.e., for bulk materials, the logarithmic
term in Eq.s25d is dominant and must be kept, which results
in the expression

s2 lns2ps2Sd < è2, so Lc < g
expfb0

c
1−cg

fcs1 − cdg1/2, s28d

whereb0 is a nonuniversal constant. The critical lengthLc
diverges much more rapidly asc→1 in three dimensions
than in two dimensions. This means that critical manifolds
are more prone to cleavage in three dimensions than in two
dimensions, for the same degree of grain-boundary engineer-
ing. The theory leading to the algebraic prefactor of the three
dimensional result may have two other logarithmic correc-
tions. The first is due to the number of ways in which a CM
fluctuation may be placed in the material. This leads to an
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additional factor ofl multiplying the left-hand side of Eq.
s24d. In addition, the energy cost equations26d may be re-
duced by a factor of lnL. These logarithmic factors do not
affect the result in two dimensions or the exponential term in
the three dimensional result. However, they do affect the
algebraic prefactor in the three dimensional result. The way
in which they modify the three dimensional result is incor-
porated into the more general formLc=gfcs1
−cdg−y expfb0c/ s1−cdg, where the new exponenty depends
on the details of the model, but is less than or equal to 1. In
comparing with numerical data, we considered several val-
ues ofy, but found thaty=1/2 provides an adequate descrip-
tion of the data. This is the case stated in Eq.s28d and in the
results which follow from it.

From the critical lengthLc we deduce the behavior of the
four CM properties which we measure. First, the co-
operative or nonperturbative contribution to the roughness of
CM’s is given by

w < gS L

Lc
Dz

so that
w

Lzg1−z ~
1

lc
z , s29d

where lc=Lc/g. At fixed g and L, we then find that in two
dimensionsfusing Eq.s27dg, for c@cSAP, w behaves as

w

g1−zLz < a1s1 − cd + a2S1 − c

c
Dz

. s30d

The first term in this expression is the perturbative term due
to the small deviations of the CM from the flat manifold. The
second term is the co-operative term, and is due to large
Imry-Ma deviations from the flat CM. In three dimensions a
similar discussion yields

w

g1−zLz < a1s1 − cd + a2fcs1 − cdgz/2e−b0zc/s1−cd. s31d

In both two and three dimensionsa2 is expected to be inde-
pendent ofg andL except for finite size scaling corrections.
However, a1 is expected to be size dependent due to the
normalization ofw. The perturbative correction should scale
as w<a18gs1−cd, with a18 a size independent constant. At
large sample sizes, we thus expecta1 to go to zero. However,
for finite grain sizes and relatively small sample sizes, there
is a significant linear term. The co-operative contribution to
the roughness of CM’s approaches zero algebraically in two
dimensions and exponentially in three dimensions. This is
typical of the behavior of periodic elastic media in the weak
disorder limit, where roughening of manifolds only occurs at
exponentially large length scalesf55g. The formss30d and
s31d are compared to the data of Figs. 9sad and 9sbd from
which it is evident that they provide a good representation of
the behavior in the largec limit.

Now we consider the fraction of the weak grain bound-
aries which lie on the CM. The average number of weak
boundaries on a cleavage plane isfw<a1s1−cd. In addition,
when the critical manifold wanders, it wanders to regions of
the material where there is an excess of weak boundaries
dfw. This is the origin of the co-operative term discussed

above. The typical value of the co-operative termdfw is de-
scribed by the same statistics as the energy fluctuations, so
that

dfw < slc
sd−1d/2/slc

d−2 + lc
d−1d, s32d

where lc=Lc/g. The term in the denominator is the total
number of grain boundaries in the favorable fluctuation. Us-
ing Eq. s27d the behavior offw in the largec limit for two
dimensional systemssthin filmsd is predicted to be

fw < a1s1 − cd + a28
slc

1/2

1 + lc
< a1s1 − cd +

a2c

1 + a3
c

1−c

, s33d

wherea1,a2,a3 are nonuniversal constants. The first term in
Eq. s33d is the perturbative term, while the second term is the
co-operative term. In three dimensions a similar argument
yields

fw < a1s1 − cd +
a2fcs1 − cdg1/2

1 + a3
eb0c/1−c

fcs1−cdg1/2

, s34d

where a1,a2,a3,b0 are nonuniversal constants and the co-
operative term is proportional tos / s1+lcd, from Eq. s32d.
These forms are compared to the numerical data in Figs. 7
from which it is seen that they provide a good representation
of the data.

The co-operative contribution to the number of bonds on
the CM is approximately

N < sgLc
d−2 + Lc

d−1dS L

Lc
Dd−1

. s35d

This leads toN/Ld−1=1+1/lc. Adding the linear term to this
co-operative term, the result for two dimensions is found to
be

N

L
< 1 + a1s1 − cd + a2s1 − cd/c, s36d

wherea1,a2 are nonuniversal constants. Again the first term
is the perturbative term, while the second term is the co-
operative term. In this case both terms have a linear depen-
dence on 1−c at small 1−c. We find that this linear behavior
is valid over a surprisingly broad regime, as is evident from
Fig. 8sad. In three dimensions, we find that

N

L2 < 1 + a1s1 − cd + a2fcs1 − cdg1/2e−b0c/s1−cd, s37d

wherea1,a2,b0 are nonuniversal constants. The close fit of
this form to the data is evident in Fig. 8sbd.

Finally, the energy is related to the number of bonds on
the manifold and the weak fraction through the relation

E = fwNe + s1 − fwdN. s38d

This is an exact equation valid for allc ande. In fact, we use
this equation as a check on the consistency of our numerical
procedures for calculatingfw, N, andE. Analytic expressions
for the energy as a function ofc at small 1−c are found by
combining Eq.s38d with Eqs.s33d and s36d for two dimen-
sions or with Eqs.s34d and s37d for three dimensions. As a
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final empirical remark, it is interesting to note that the two
dimensional energy data are well described by the simple
relation

E

L
< 0.97 − 1.74s1 − cd s39d

for a broad range of values of 1−c. We do not have an
explanation for why the rather complex expression found
from Eq. s38d with Eqs.s33d and s36d should reduce to this
simple behavior over such a broad range of 1−c, though of
course a term proportional to 1−c is expected from Eq.s38d.

Although the unbiased fits of the scaling laws to the nu-
merical data are very good, the parameter values found are
not precisely determined. That is, the fits are not markedly
worse if the parameter values are varied significantly. This is
more severe in three dimensions where the data are restricted
to small effective lattice sizes. If the grain size is large and
the lattice size is large, we expect the finite size effects to be
less severe and the correspondence between the scaling laws
and the data to improve. It is thus not surprising that the
theory is quite precise in two dimensions. It is also important
to note that the unbiased fits of the 3D data lead to different
values of the key parameterb0 in the exponential of the
critical length fsee Eq.s28dg. The unbiased fits lead to the
resultsb0=1.48 from the roughness datassee the caption to
Fig. 9d, b0=0.53 from the weak fraction datassee the caption
to Fig. 7d, and b0=0.68 from the data for the number of
bonds on the CMssee the caption to Fig. 8d. The values for
b0 should be the same, so we also carried out fits to the data
where the value ofb0 is chosen to find a best fit which is
most consistent with all of the data. The fits are not signifi-
cantly worse than those presented in Figs. 7–9 for a fixed
value of b0=1.0±0.2 with the other parameters free. This
suggests that multiple data sets are required to extract reli-
able fitting parameters from the three dimensional numerical
data on the sample sizes currently available.

D. Unified form of scaling theory

In the statistical physics analysis of manifolds, the rough-
ness scaling plays a central role. In this context, it is worth
noting that it is possible to state all of the above roughness
results in a unified form. To do this, define a scaling length

Rc = minsj,grcd s40d

which is the minimum of the percolative correlation length
j=guc−cSAPu−n and energy cutoff lengthgrc=g/e1/De. The
smaller of these two lengths cuts off the percolative fluctua-
tions. UsingRc as the lattice spacing in a nodes link and
blobs picture leads to the roughness scaling

w ~ RcsL/Rcdz c , cSAP. s41d

In the regimec.cSAP we need to take into account the ef-
fects of the periodic potential, which leads to

w ~ RcsL/Lc8d
z c . cSAP, s42d

whereLc8=Rclc and lc=Lc/g is given by Eqs.s27d and s28d.
These scaling forms apply for all values ofc, providedL
@Rc, Lc.

V. DISCUSSION AND CONCLUSIONS

We have presented an analysis of the properties of grain-
boundary networks where a fraction of the grain boundaries
c are strong and the complementary fraction 1−c is weak.
The grain-boundary networks studied in detail here are ran-
dom, isotropic grain boundary networks, however, the nu-
merical and analytic procedures we used can be adapted to
any given grain boundary or interface network.

We found that the percolation of a strongly connected
aggregate occurs atcSAP

2D =0.38±0.01 in two dimensions, and
at cSAP

3D =0.12±0.03 in three dimensions. The fraction of
grains in the polycrystalline material which are part of the
percolating aggregrate behaves asg~ sc−cSAPdb, for c
.cSAP andc−cSAP small. The onset of percolation of weak
grain boundaries occurs atcWBP

2D =0.38±0.01 in two dimen-
sions and atcWBP

3D =0.77±0.03 in three dimensions. In two
dimensionscSAP=cWBP. However, in three dimensionscWBP
@cSAP, which means that in three dimensions there is a
broad range of concentrationscSAP

3D ,c,cWBP
3D where a per-

colating strong aggregate and a percolating cluster of weak
boundaries co-exist. This interpenetrating regime is absent in
two dimensions and presents some interesting possibilities in
the design of materials which require both access to the ma-
terial interior as well as strong connectivity of the grain
structure. In the case of corrosion, it is desirable to restrict
access of corrosive agents to the interior of a material. In
some important structural materials specialsstrongd grain
boundaries restrict diffusion of corrosive agents while the
remainingsrandomd boundaries allow diffusion of corrosive
agents. In that case it is important to produce materials with
the fraction of strong grain boundaries in the rangec
.cWBP. To further quantify the degree to which corrosive
agents penetrate in this regime, we defined a percolative or-
der parameter called the penetration depthlP, which is the
linear size of the largest cluster of weak grain boundaries
which is connected to the boundary of the sample. This pen-
etration depth diverges on approach tocWBP from above,
with the scaling behaviorlP~ sc−cWBPd−n. In practical terms
lP diverges rapidly asc→cWBP so that forc.cWBP there is a
very significant decrease in the degree to which corrosive
agents can penetrate the material.

The critical manifoldsCMd in a random network can be
found efficiently using the max-flow/min-cut theorem. The
critical manifold is the minimum cut and the maximum flow
corresponds to the energy or current carrying capacity of the
CM, depending on the application. In the case of polycrys-
talline high temperature superconductors the maximum flow
corresponds to the critical current, while in brittle fracture it
corresponds to the energy required to break the bonds which
lie on the fracture surface. In the study of CM’s we are able
to introduce an additional parameter, the energy contrast,
which is important in applications. The energy contraste is
the ratio between the “strength” of the weak boundaries and
the “strength” of the strong boundaries. In the case of struc-
tural applications, the strength corresponds to the bonding
energy of the GB while in high temperature superconductors
it corresponds to the critical current of the grain boundaries.
In the structural applications the typical ratio between the
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bonding strength of special boundaries, such asS3 bound-
aries, and random boundaries is of ordere<1/5–1/10,
while in high temperature superconductors, the critical cur-
rent of high angle boundaries is of order a hundred times
lower than that of low angle boundaries, so in that applica-
tion e<1/100.

We presented data for the casese=0.0001, 0.01, 0.1. We
studied four aspects of CM’s in polycrystalline materials
with a fractionc of strong grain boundaries: The energysor
critical currentd densityE/Ld−1, the number of bonds on the
CM, N/Ld−1; the fraction of the CM that consists of weak
grain boundaries,fw; and the roughness of the CM,w. The
CM is sensitive to the percolation of a strong aggregate, so
critical scaling of the CM properties occurs atc=cSAP, but
nothing special happens to the CM scaling atcWBP as is clear
from the results found in three dimensions wherecSAP
!cWBP. fNote, however, that there are “critical paths”sCP’sd
that are singular atcWBP as will be described elsewhere.g
Large scale simulations were carried out for the four proper-
ties above in both two dimensions and in three dimensions
ssee Figs. 6–9d. The energy and the fraction of weak bonds
on the CM are monotonic functions of the strong boundary
concentrationssee Figs. 6 and 7d while the number of bonds
on the CM and the roughness of the CM exhibit a peak close
to the critical threshold,cSAP ssee Figs. 8 and 9d.

The numerical results are well described by simple scal-
ing relations adapted from existing theories of random mani-
folds and periodic elastic media. One simple adaption is that
in polycrystalline materials we need to define an effective
lattice sizeL /g, where L is the sample size andg is the
average grain size. Forc!cSAP, the theory of random mani-
folds applies; forc,cSAP critical scaling based on percola-
tion theory provides an adequate theory; while forc.cSAP
the theory of periodic elastic media applies. The latter regime
is perhaps the most interesting from both a theoretical and an
application standpoint. In that regime, we define a critical
length scaleLc, so that cleavage occurs in regions of typical
size Lc and that the CM wanders and roughens on length
scalesLc. All of the properties we calculated are related to
the scaling behavior ofLc, which is well described by simple
scaling laws. The critical lengthLc diverges asc→1. It has
an algebraic divergence in two dimensions and in the limit
e→0 we found an explicit expression for this divergence,
Lc~gc/ s1−cd. In three dimensionsLc diverges even more
rapidly asc→1 andsin fact it diverges exponentiallyd, and in
the limit e→0 we find, Lc~g expfb0c/ s1−cdg / fcs1−cdg1/2

where b0 is a nonuniversal constant which is of order 1.
From the expression forLc, it is straightforward to develop
scaling laws for many of the properties of interest, for ex-
ample the manifold energy and its roughnessfsee Eqs.s30d
ands31dg. The peaks observed nearcSAP in the roughness and
in the number of bonds on the CM are strongly rounded by
finite values of the energy contraste. In two dimensions we
found that this peak diverges with energy contrast ase−0.266,

while in three dimensions we predicted that this peak grows
ase−0.233.

From a statistical physics viewpoint the GBE materials
present an interesting opportunity to experimentally test the
scaling theories of random manifolds and periodic elastic
media. Grain-boundary networks can be controlled carefully
and the fraction of weak boundaries can also be controlled,
so that the scaling laws for many of the properties of interest
can be tested as a function of a tunable concentrationc and
energy ratioe.

From a practical GBE viewpoint there are some interest-
ing trends and possibilities suggested in the results presented
here. One observation is evident from the behavior of the
energy density presented in Fig. 6 which corresponds to the
critical current in polycrystalline high temperature supercon-
ductors. It is clear from this figure that there is a roughly
linear improvement in the properties of the critical current of
high Tc films for all c.0.5 which means that over 50% of
the grain boundaries need to be low angle boundaries in
isotropic polycrystalline thin films. In the case of bulk mate-
rials, there is a roughly linear regime which has an onset at
c<0.3 and extends to roughlyc<0.65. It is thus necessary
to have at least 30% of grain boundaries in bulk polycrystal-
line high Tc materials be low angle boundaries to be in this
regime. However, efforts to increase the fraction of low
angle boundaries beyond about 65% in bulk materials is rela-
tively futile as the improvement in critical current is rela-
tively slow in this regime. A second potentially interesting
feature is the peak inN andw at intermediate values ofc, for
example in materials where roughness and toughness can be
correlated. In using the enhancement inN or w for engineer-
ing of toughness one has to be aware of the strong rounding
for finite e.

Finally, in GBE modeling it is important to realize that
there is a fundamental difference between two and three di-
mensions. In a broad concentration regime in three dimen-
sions a percolating strong aggregate and a percolating cluster
of weak boundaries co-exist. In two dimensions these two
percolating clusters do not co-exist. In addition, the scaling
behavior of cleavage regions in two dimensions is quite dif-
ferent than that of cleavage regions in three dimensions, es-
pecially in the important practical regimec.cSAP. This is
due to the fact thatLc diverges algebraically in two dimen-
sions while it diverges exponentially in three dimensions.

ACKNOWLEDGMENTS

The research at MSU has been supported by the DOE
under Contract No. DE_FG02-90ER45418, and by Sandia
National Laboratories. This work was performed in part at
Sandia National Laboratories, a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract
No. DE-AC04-94AL85000.

MCGARRITY, DUXBURY, AND HOLM PHYSICAL REVIEW E 71, 026102s2005d

026102-14



f1g J. Don and S. Majumdar, Acta Metall.34, 961 s1986d.
f2g D. B. Wells, J. Stewart, A. W. Herbert, P. M. Scott, and D. E.

Williams, CorrosionsHoustond 45, 649 s1989d.
f3g L. C. Lim and T. Watanabe, Acta Metall. Mater.38, 2507

s1990d.
f4g G. Palumbo, P. J. King, K. T. Aust, U. Erb, and P. C. Lichten-

berger, Scr. Metall. Mater.25, 1775s1991d.
f5g D. C. Crawford and G. S. Was, Metall. Trans. A23, 1195

s1992d.
f6g K. T. Aust, U. Erb, and G. Palumbo, Mater. Sci. Eng., A176,

329 s1994d.
f7g T. Watanabe, Mater. Sci. Eng., A176, 39 s1994d.
f8g Y. Pan, T. Olson, and B. L. Adams, Can. Metall. Q.34, 147

s1995d.
f9g V. Y. Gertsman, M. Janecek, and K. Tangri, Acta Mater.44,

2869 s1996d.
f10g V. Y. Gertsman and K. Tangri, Acta Mater.45, 4107s1997d.
f11g E. M. Lehockey, G. Palumbo, P. Lin, and A. Brennenstuhl,

Metall. Mater. Trans. A29, 387 s1998d.
f12g G. Palumbo, E. M. Lehockey, and P. Lin, JOM50, 40 s1998d.
f13g V. Randle, Acta Mater.47, 4187s1999d.
f14g T. Watanabe and S. Tsurekawa, Acta Mater.47, 4171s1999d.
f15g M. Kumar, W. E. King, and A. J. Schwartz, Acta Mater.48,

2081 s2000d.
f16g V. Y. Gertsman and S. M. Bruemmer, Acta Mater.49, 1589

s2001d.
f17g R. W. Minich, C. A. Schuh, and M. Kumar, Phys. Rev. B66,

52101s2002d.
f18g C. A. Schuh, M. Kumar, and W. E. King, Acta Mater.51, 687

s2003d.
f19g D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues,

Phys. Rev. Lett.61, 219 s1988d.
f20g J. Rhyner and G. Blatter, Phys. Rev. B40, R829s1989d.
f21g R. Riedinger, Cryogenics30, 464 s1990d.
f22g C. S. Nichols and D. R. Clarke, Acta Metall. Mater.39, 995

s1991d.
f23g M. Prester, Phys. Rev. B54, 606 s2002d.
f24g E. D. Specht, A. Goyal, and D. M. Kroeger, Phys. Rev. B53,

3585 s1996d.
f25g R. Haslinger and R. Joynt, Phys. Rev. B61, 4206s2000d.
f26g J. L. Reeves, D. M. Feldmann, C. Y. Yang, and D. C. Larbal-

estier, IEEE Trans. Appl. Supercond.11, 3863s2001d.
f27g B. Zeimetz, N. A. Rutter, B. A. Glowacki, and J. E. Evetts,

Supercond. Sci. Technol.14, 672 s2001d.
f28g Y. Nakamura, T. Izumi, and Y. Shiohara, Physica C371, 275

s2002d.
f29g B. Zeimetz, B. A. Glowacki, and J. E. Evetts, Eur. Phys. J. B

29, 359 s2002d.
f30g B. Zeimetz, B. A. Glowacki, and J. E. Evetts, Physica C372-

376, 767 s2002d.
f31g M. Eisterer, M. Zehetmayer, and H. W. Weber, Phys. Rev.

Lett. 90, 247002s2003d.
f32g M. Frary and C. A. Schuh, Appl. Phys. Lett.83, 3755s2003d.
f33g K. Ogawa and K. Osamura, Phys. Rev. B67, 184509s2003d.
f34g C. A. Schuh, R. W. Minich, and M. Kumar, Philos. Mag.83,

711 s2003d.
f35g M. Bartkowiak, G. D. Mahan, F. A. Modine, M. A. Alim, R.

Lauf, and A. McMillan, J. Appl. Phys.80, 6516s1996d.
f36g D. R. Clarke, J. Am. Ceram. Soc.82, 485 s1999d.
f37g M. P. Anderson, D. J. Srolovitz, G. S. Grest, and P. Shani, Acta

Metall. 32, 783 s1984d.
f38g D. J. Srolovitz, M. P. Anderson, P. S. Sahni, and G. S. Grest,

Acta Metall. 32, 793 s1984d.
f39g M. Miodownik, A. W. Godfrey, E. A. Holm, and D. A.

Hughes, Acta Mater.47, 2661s1999d.
f40g E. A. Holm and C. C. Battaile, JOM53, 20 s2001d.
f41g G. Deutscher, O. Entin-Wohlman, S. Fishman, and Y. Shapira,

Phys. Rev. B21, 5041s1980d.
f42g O. Entin-Wohlman, A. Kapitulnik, S. Alexander, and G. Deut-

scher, Phys. Rev. B30, 2617s1984d.
f43g S. Roux, A. Hansen, and E. Guyon, J. Phys.sParisd 48, 2125

s1987d.
f44g M. Octavio, A. Octavio, J. Aponte, R. Medina, and C. J. Lobb,

Phys. Rev. B37, 9292s1988d.
f45g E. L. Hinrichsen, S. Roux, and A. Hansen, Physica C167, 433

s1990d.
f46g D. Stauffer and A. Aharony,Introduction to Percolation

TheorysTaylor & Francis, London, 1994d.
f47g A. Donev, C. E. Musolff, and P. M. Duxbury, J. Phys. A35,

L1 s2002d.
f48g D. A. Huse and C. L. Henley, Phys. Rev. Lett.54, 2708

s1985d.
f49g V. I. Raisanen, E. T. Seppälä, M. J. Alava, and P. M. Duxbury,

Phys. Rev. Lett.80, 329 s1998d.
f50g J. H. Meinke, E. S. McGarrity, P. M. Duxbury, and E. A.

Holm, Phys. Rev. E68, 066107s2003d.
f51g A. A. Middleton, Phys. Rev. E52, R3337s1995d.
f52g M. J. Alava and P. M. Duxbury, Phys. Rev. B54, 14990

s1996d.
f53g E. A. Holm, J. Am. Ceram. Soc.81, 455 s1998d.
f54g E. A. Holm and G. N. McGovney, inFracture and Deductive

vs. Brittle Behavior—Theory, Modeling and Experiment, ed-
ited by G. E. Beltz, R. L. Lumberg Selinger, M. P. Marder, and
K.-S. Kim, Mater. Res. Soc. Symp. Proc. No. 539sMaterials
Research Society, Pittsburgh, 1999d, p. 325.

f55g J. P. Bouchaud and A. Georges, Phys. Rev. Lett.68, 3908
s1992d.

f56g T. Emig and T. Nattermann, Eur. Phys. J. B8, 525 s1999d.
f57g E. T. Seppälä, M. J. Alava, and P. M. Duxbury, Phys. Rev. E

63, 036126s2001d.
f58g G. S. Was, V. Thaveeprungsriporn, and D. C. Crawford, JOM

50, 44 s1998d.
f59g B. B. Mandelbrot, D. E. Passoja, and A. J. Paulley, Nature

sLondond 308, 721 s1984d.
f60g T. Engøy, K. J. Måløy, A. Hansen, and S. Roux, Phys. Rev.

Lett. 73, 834 s1994d.
f61g E. Bouchaud, J. Phys.: Condens. Matter9, 4319s1997d.
f62g E. Bouchaud, J. P. Bouchaud, D. S. Fisher, S. Ramanathan, and

J. R. Rice, J. Mech. Phys. Solids50, 1703s2002d.
f63g S. Morel, E. Bouchaud, J. Schmittbuhl, and G. Valentin, Int. J.

Fract. 114, 307 s2002d.
f64g A. V. Goldberg and R. E. Tarjan,Proceedings of the eighteenth

annual ACM Symposium on the Theory of Computing, Berke-
ley, CA, May 28–30, 1986sACM Press, New York, 1986d, p.
136.

f65g M. J. Alava, P. M. Duxbury, C. F. Moukarzel, and H. Rieger,
in Phase Transistions and Critical Phenomena, edited by C.
Domb and J. LebowitzsAcademic, New York, 2001d, Vol. 18.

f66g D. S. Fisher, Phys. Rev. Lett.56, 1964s1986d.
f67g P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Rev. B36,

367 s1987d.

STATISTICAL PHYSICS OF GRAIN-BOUNDARY ENGINEERING PHYSICAL REVIEW E71, 026102s2005d

026102-15


